Estimation of Functionals of Multivariate Distribution by Censored Observation Via Copula Function

نویسندگان

چکیده

The problem of estimation multivariate survival function under dependent random right-censoring observations is considered. To construct estimators, Archimedean copula functions are used. Consistency properties estimators proved by martingale techniques. possibility application to integral-type functionals discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of multivariate heavy-tailed distribution families via copula

The multivariate regular variation (MRV) is one of the most important tools in modeling multivariate heavy-tailed phenomena. This paper characterizes the MRV distributions through the tail dependence function of the copula associated with them. Along with some existing results, our studies indicate that the existence of the lower tail dependence function of the survival copula is necessary and ...

متن کامل

Nonparametric estimation of the multivariate distribution function in a censored regression model with applications

In a regression model with univariate censored responses, a new estimator of the joint distribution function of the covariates and response is proposed, under the assumption that the response and the censoring variable are independent conditionally to the covariates. This estimator is based on the conditional Kaplan-Meier estimator of Beran (1981), and happens to be an extension of the multivar...

متن کامل

Nonparametric estimation of multivariate distribution function for truncated and censored lifetime data

In this article we consider a number of models for the statistical data generation in different areas of insurance, including life, pension and non-life insurance. Insurance statistics are usually truncated and censored, and often are multidimensional. There are algorithms for estimating the distribution function for such data but they are applicable for one-dimensional case. The most effective...

متن کامل

Two-stage estimation using copula function

‎Maximum likelihood estimation of multivariate distributions needs solving a optimization problem with large dimentions (to the number of unknown parameters) but two‎- ‎stage estimation divides this problem to several simple optimizations‎. ‎It saves significant amount of computational time‎. ‎Two methods are investigated for estimation consistency check‎. ‎We revisit Sankaran and Nair's bivari...

متن کامل

Kernel estimation of multivariate cumulative distribution function

A smooth kernel estimator is proposed for multivariate cumulative distribution functions (cdf), extending the work of Yamato [H. Yamato, Uniform convergence of an estimator of a distribution function, Bull. Math. Statist. 15 (1973), pp. 69–78.] on univariate distribution function estimation. Under assumptions of strict stationarity and geometrically strong mixing, we establish that the proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2022

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-022-06111-4